52 research outputs found

    World Volume Noncommutativity versus Target Space Noncommutativity

    Full text link
    It is known that the noncommutativity of D-brane coordinate is responsible for describing the higher-dimensional D-branes in terms of more fundamental ones such as D-particles or D-instantons, while considering a noncommutative torus as a target space is conjectured to be equivalent to introducing the background antisymmetric tensor field in matrix models. In the present paper we clarify the dual nature of both descriptions. Namely the noncommutativity of conjugate momenta of the D-brane coordinates realizes the target space structure, whereas noncommutativity of the coordinates themselves realizes world volume structure. We explicitly construct a boundary state for the Dirichlet boundary condition where the string boundary is adhered to the D-brane on the noncommutative torus. There are non-trivial relations between the parameters appeared in the algebra of the coordinates and that of the momenta.Comment: 17 pages, LaTex, no figure

    Existence of new nonlocal field theory on noncommutative space and spiral flow in renormalization group analysis of matrix models

    Get PDF
    In the previous study, we formulate a matrix model renormalization group based on the fuzzy spherical harmonics with which a notion of high/low energy can be attributed to matrix elements, and show that it exhibits locality and various similarity to the usual Wilsonian renormalization group of quantum field theory. In this work, we continue the renormalization group analysis of a matrix model with emphasis on nonlocal interactions where the fields on antipodal points are coupled. They are indeed generated in the renormalization group procedure and are tightly related to the noncommutative nature of the geometry. We aim at formulating renormalization group equations including such nonlocal interactions and finding existence of nontrivial field theory with antipodal interactions on the fuzzy sphere. We find several nontrivial fixed points and calculate the scaling dimensions associated with them. We also consider the noncommutative plane limit and then no consistent fixed point is found. This contrast between the fuzzy sphere limit and the noncommutative plane limit would be manifestation in our formalism of the claim given by Chu, Madore and Steinacker that the former does not have UV/IR mixing, while the latter does.Comment: 1+47 pages, no figure; Ver. 2, references and some comments are added; Ver. 3, typos corrected. Version to appear in JHE

    Supersymmetric double-well matrix model as two-dimensional type IIA superstring on RR background

    Get PDF
    In the previous paper, the authors pointed out correspondence of a supersymmetric double-well matrix model with two-dimensional type IIA superstring theory on a nontrivial Ramond-Ramond background from the viewpoint of symmetries and spectrum. In this paper we further investigate the correspondence from dynamical aspects by comparing scattering amplitudes in the matrix model and those in the type IIA theory. In the latter, cocycle factors are introduced to vertex operators in order to reproduce correct transformation laws and target-space statistics. By a perturbative treatment of the Ramond-Ramond background as insertions of the corresponding vertex operators, various IIA amplitudes are explicitly computed including quantitatively precise numerical factors. We show that several kinds of amplitudes in both sides indeed have exactly the same dependence on parameters of the theory. Moreover, we have a number of relations among coefficients which connect quantities in the type IIA theory and those in the matrix model. Consistency of the relations convinces us of the validity of the correspondence.Comment: 52 pages, version to appear in JHE

    T-duality of ZZ-brane

    Get PDF
    We examine how nonperturbative effects in string theory are transformed under the T-duality in its nonperturbative framework by analyzing the c=1/2 noncritical string theory as a simplest example. We show that in the T-dual theory they also take the form of exp(-S_0/g_s) in the leading order and that the instanton actions S_0 of the dual ZZ-branes are exactly the same as those in the original c=1/2 string theory. Furthermore we present formulas for coefficients of exp(-S_0/g_s) in the dual theory.Comment: 37 pages, no figure, LaTeX; (v2) version published in Physical Review

    Resurgence of one-point functions in a matrix model for 2D type IIA superstrings

    Get PDF
    In the previous papers, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. Furthermore, in the matrix model we computed one-point functions of single-trace operators to all orders of genus expansion in its double scaling limit, and found that the large-order behavior of this expansion is stringy and not Borel summable. In this paper, we discuss resurgence structure of these one-point functions and see cancellations of ambiguities in their trans-series. More precisely, we compute both series of ambiguities arising in a zero-instanton sector and in a one-instanton sector, and confirm how they cancel each other. In case that the original integration contour is a finite interval not passing through a saddle point, we have to choose an appropriate integration path in order for resurgence to work.Comment: 25 pages, 2 figures, typos correcte

    Manifestly T-Duality Symmetric Matrix Models

    Get PDF
    We present a new class of matrix models which are manifestly symmetric under the T-duality transformation of the target space. The models may serve as a nonperturbative regularization for the T-duality symmetry in continuum string theory. In particular, it now becomes possible to extract winding modes explicitly in terms of extended matrix variables.Comment: REVTeX, 15 pages, no figure

    Noncommutativities of D-branes and θ\theta-changing Degrees of Freedom in D-brane Matrix Models

    Full text link
    It is known that when there are several D-branes, their space-time coordinates in general become noncommutative. From the point of view of noncommutative geometry, it reflects noncommutativity of the world volume of the D-branes. On the other hand, as we showed in the previous work, in the presence of the constant antisymmetric tensor field the momentum operators of the D-branes have noncommutative structure. In the present paper, we investigate a relation between these noncommutativities and the description of D-branes in terms of the noncommutative Yang-Mills theory recently proposed by Seiberg and Witten. It is shown that the noncommutativity of the Yang-Mills theory, which implies that of the world volume coordinates, originates from both noncommutativities of the transverse coordinates and momenta from the viewpoint of the lower-dimensional D-branes. Moreover, we show that this noncommutativity is transformed by coordinate transformations on the world volume and thereby can be chosen in an arbitrary fixed value. We also make a brief comment on a relation between this fact and a hidden symmetry of the IIB matrix models.Comment: 15 pages, LaTeX, no figures, arguments on the action and symmetry are improve
    • …
    corecore